Fibroblast-type reticular stromal cells regulate the lymph node vasculature.
نویسندگان
چکیده
The lymph node vasculature is essential to immune function, but mechanisms regulating lymph node vascular maintenance and growth are not well understood. Vascular endothelial growth factor (VEGF) is an important mediator of lymph node endothelial cell proliferation in stimulated lymph nodes. It is expressed basally in lymph nodes and up-regulated upon lymph node stimulation, but the identity of VEGF-expressing cells in lymph nodes is not known. We show that, at homeostasis, fibroblast-type reticular stromal cells (FRC) in the T zone and medullary cords are the principal VEGF-expressing cells in lymph nodes and that VEGF plays a role in maintaining endothelial cell proliferation, although peripheral node addressin (PNAd)(+) endothelial cells are less sensitive than PNAd(-) endothelial cells to VEGF blockade. Lymphotoxin beta receptor (LTbetaR) blockade reduces homeostatic VEGF levels and endothelial cell proliferation, and LTbetaR stimulation of murine fibroblast-type cells up-regulates VEGF expression, suggesting that LTbetaR signals on FRC regulate lymph node VEGF levels and, thereby, lymph node endothelial cell proliferation. At the initiation of immune responses, FRC remain the principal VEGF mRNA-expressing cells in lymph nodes, suggesting that FRC may play an important role in regulating vascular growth in stimulated nodes. In stimulated nodes, VEGF regulates the proliferation and expansion of both PNAd(+) and PNAd(-) endothelial cells. Taken together, these data suggest a role for FRC as paracrine regulators of lymph node endothelial cells and suggest that modulation of FRC VEGF expression may be a means to regulate lymph node vascularity and, potentially, immune function.
منابع مشابه
Regular Article VASCULAR BIOLOGY CLEC-2 is required for development and maintenance of lymph nodes
Lymph nodes (LNs) are organized anatomical structures distributed at strategic sites alongside the lymphatic vasculature that provide the hub of the acquired immune system. Their organization is supported by stromal cell populations, allowing maximal interaction between antigen-loaded dendritic cells (DCs) migrating through the afferent lymphatic vasculature and recirculating lymphocytes enteri...
متن کاملFate mapping reveals origin and dynamics of lymph node follicular dendritic cells
Follicular dendritic cells (FDCs) regulate B cell function and development of high affinity antibody responses but little is known about their biology. FDCs associate in intricate cellular networks within secondary lymphoid organs. In vitro and ex vivo methods, therefore, allow only limited understanding of the genuine immunobiology of FDCs in their native habitat. Herein, we used various multi...
متن کاملReproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells
Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique a...
متن کاملFibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle.
The connective tissue of any organ in the body is generally referred to as stroma. This complex network is commonly composed of leukocytes, extracellular matrix components, mesenchymal cells, and a collection of nerves, blood, and lymphoid vessels. Once viewed primarily as a structural entity, stromal cells of mesenchymal origin are now being intensely examined for their ability to directly reg...
متن کاملA dendritic-cell-stromal axis maintains immune responses in lymph nodes.
Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 181 6 شماره
صفحات -
تاریخ انتشار 2008